Thursday, 27 September 2018

Métodos de previsão média simples em movimento


Previsão por técnicas de suavização Este site faz parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicativos na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab na seta ou entre as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos, e o comportamento residual, modelagem de previsão de condição. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Suavização Exponencial Triplo é melhor em lidar com as tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holmes Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual quanto a tendência atual. Observe que a média móvel simples é um caso especial do suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0.40 geralmente é eficaz. No entanto, pode-se realizar uma busca em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar a precisão e escolher entre os vários métodos de previsão. Nesta abordagem, um deve traçar (usando, por exemplo, Excel) no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões passadas por técnicas de suavização JavaScript para obter os valores de previsão passados ​​com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance que define o nível para a última observação e baseia-se na condição de que não haja nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. O alisamento exponencial linear Holts captura informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção recente da tendência é suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão em duas etapas. Simplesmente adicione o valor previsto ao final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir esse processo por algumas vezes, para obter as previsões necessárias a curto prazo. Fator de Sorteo Estrutural - a porcentagem da demanda trimestral média que ocorre em cada trimestre. Previsão anual para o ano 4 prevê ser de 400 unidades. A previsão média por trimestre é de 4004 100 unidades. Previsão trimestral avg. Previsão do fator sazonal. MÉTODOS DE PREECISÃO CAUSAL métodos de previsão causais baseiam-se em uma relação conhecida ou percebida entre o fator a ser previsto e outros fatores externos ou internos 1. regressão: a equação matemática relaciona uma variável dependente a uma ou mais variáveis ​​independentes que se acredita que influenciam a variável dependente 2. modelos econométricos: sistema de equações de regressão interdependentes que descrevem algum setor de atividade econômica. 3. modelos de insumos-saídas: descreve os fluxos de um setor da economia para outro e, assim, prevê os insumos necessários para produzir resultados em outro setor 4. Modelagem de simulação MEDIANDO ERROS DE PREVISÃO Existem dois aspectos dos erros de previsão a serem preocupados - Bias e Bias de Precisão - Uma previsão é tendenciosa se ele se equivoca mais em uma direção do que no outro - O método tende a sub-previsões ou previsões excessivas. Precisão - A precisão da previsão refere-se à distância das previsões da demanda real ignorar a direção desse erro. Exemplo: Para seis períodos, as previsões e a demanda real foram rastreadas. A tabela a seguir apresenta demanda real D t e demanda prevista F t por seis períodos: soma cumulativa dos erros de previsão (CFE) -20 desvio absoluto médio (MAD) 170 6 28,33 quadrado médio Erro de erro (MSE) 5150 6 858,33 desvio padrão de erros de previsão 5150 6 29,30 erro de porcentagem absoluta média (MAPE) 83,4 6 13,9 O que as informações fornecem a previsão tem uma tendência a superestimar o erro médio da demanda por previsão foi de 28,33 unidades, ou 13,9 A distribuição da amostra de demanda real de erros de previsão tem desvio padrão de 29,3 unidades. CRITÉRIOS PARA SELECIONAR UM MÉTODO DE PREVISÃO Objetivos: 1. Maximizar a Precisão e 2. Minimizar Regras de Potencial de Bias para selecionar um método de previsão de séries temporais. Selecione o método que dá o menor viés, conforme medido pelo erro de previsão acumulado (CFE) ou dá o menor desvio absoluto médio (MAD) ou dá o menor sinal de rastreamento ou aceita crenças de gerenciamento sobre o padrão subjacente de demanda ou outros. Parece óbvio que alguma medida de precisão e polarização deve ser usada em conjunto. Como o que é sobre o número de períodos a serem amostrados se a demanda for inerentemente estável, valores baixos de e valores maiores de N são sugeridos se a demanda for intrinsecamente instável, valores elevados de valores N e N e menores são sugeridos? FOCUS FORECASTING quotfocus forecastingquot refere-se a Uma abordagem para a previsão que desenvolve previsões por várias técnicas, em seguida, escolhe a previsão que foi produzida pelo quotbestquot dessas técnicas, onde quotbestquot é determinado por alguma medida de erro de previsão. PREVISÃO DE FOCO: EXEMPLO Para os primeiros seis meses do ano, a demanda por um item de varejo foi de 15, 14, 15, 17, 19 e 18 unidades. Um revendedor usa um sistema de previsão de foco com base em duas técnicas de previsão: uma média móvel de dois períodos e um modelo de alívio exponencial ajustado pela tendência com 0,1 e 0,1. Com o modelo exponencial, a previsão para janeiro foi de 15 e a média de tendências no final de dezembro foi 1. O varejista utiliza o desvio absoluto médio (MAD) nos últimos três meses como critério para escolher qual modelo será usado para prever Para o próximo mês. uma. Qual será a previsão para julho e qual modelo será usado b. Você responderia à parte a. Seja diferente se a demanda de maio tivesse sido 14 em vez de 19

No comments:

Post a Comment